Wintegrate

Wind energy and wind conditions in the built environment

The case for urban wind turbines

Mark.Runacres@vub.ac.be

Overview

- A brief introduction to wind energy
- The economics of wind turbines
- Estimating the annual energy production
- Small and medium-sized wind turbines
- The wind potential in Brussels
- Summary and conclusions

A quick introduction to wind energy

3

Quick introduction to wind energy

- A wind turbine is a machine that converts the flow of air into electricity
- The wind drives a rotor that is connected to a generator

 The working principle of a generator is the same as that of a bicycle dynamo

The power in the wind

Wind has energy because it is moving:

$$E = \frac{1}{2}mv^2$$

- When will a lot of kinetic energy flow through the rotor per unit of time?
 - When the rotor has a large surface S and/or the wind speed V is high
- Power proportional to $V^2 \times V \times S = V^3 \times S$

5

The power in the wind

- Power proportional to $V^3 \times S$
- This explains a few basic facts about wind energy
 - A bigger wind turbine produces more power (that's why wind turbines keep getting bigger)
 - ▶ The dependence of power on wind speed is strong:
 - » If the wind speed doubles, the power increases by factor of 8
 - » If the wind speed increases by 25%, the power doubles
 - Wind energy is variable

The force that turns the blades

 The force that turns the rotor blades is the same force that allows aeroplanes to fly: *lift*

7

Power of wind turbines

Wind turbines cover a wide range in powers (P)

- P < 1 kW: marine, telecom
- 1 kW < P < 10 kW: small SMEs, agriculture, households
- ▶ 10 kW < P < 300 kW: SMEs, agriculture, community energy
- ▶ 300 kW < *P* < 10 MW: utility-scale energy production, often in wind farms

Power and energy

- In good conditions
 - A 1000 kW turbine will produce around 3 500 000 kWh/yr
 - A 100 kW turbine will produce around 350 000 kWh/yr
 - ▶ A 5 kW turbine will produce around 13 000 kWh/yr
- The average Belgian household consumes 3500 kWh/yr of electricity

c

The economics of wind energy

The economics of wind energy

- Levelised cost of energy (LCOE)
 - Definition

 $\label{eq:LCOE} LCOE = \frac{TLCC}{TDEP} \qquad \qquad \begin{array}{l} \textbf{TLCC: Total lifetime cost} \\ \textbf{TDEP: Total discounted energy production} \end{array}$

- Cost and benefits are discounted:
 - » a euro gained today is better than a euro gained tomorrow⇒ cost and benefits count for less if they occur later in time
- If the LCOE is lower than the selling price of electricity, then an investment can be deemed economically viable

11

The economics of wind energy

- Payback period
 - ▶ How long does it take to recoup the investment?
 - ▶ The first year n for which we have
 - Investment
 - + (Cash flow)yr 1
 - + (Cash flow)yr 2
 - + ...
 - + (Cash flow)yr n > 0
 - The cash flows in the future also need to be discounted: dynamic payback period
 - If you neglect this (but you shouldn't): static payback period

The economics of wind energy

- Internal rate of return (IRR)
 - Net present value (NPV)

$$NPV = -Investment + \sum_{n=1}^{N} \frac{CF_n}{(1+r)^n}$$

• IRR: the discount rate r for which NPV = 0

13

The economics of wind energy

- To decide on the viability of a wind turbine project, cost and benefits need to be estimated carefully
- The most difficult part: annual energy production of the wind turbine on a given location

Wind turbine power curve

- Wind turbine is characterised by a power curve
 - Electrical power output as a function of the wind speed
 - Essential for estimation of energy production

Wind speed distribution

Estimating the annual energy production (AEP)

- Assess the wind resources
 - » Wind measurement campaign

Combine hub-height wind measurements with the power

curve

17

Money from energy production

- Energy can be sold to the grid (not very rewarding)
- Avoided costs represent a monetary value (and hence a positive cash flow)
- Support measures such as green current certificates increase the cash flow
- Secondary benefits such as greening of company image have economic value that is difficult to quantify, but important

Small and medium wind turbines

19

Small and medium-sized wind turbines

IEC 61400-2 Small wind turbines

- "a system of 200 m² rotor swept area or less that converts kinetic energy in the wind into electrical energy"
- d ≤ 16 m
- ▶ $P_{rated} \lesssim 50 \text{ kW}$
- Medium-sized wind turbines working definition: 50 -300 kW

Small and medium wind turbines

- Challenge of small and medium wind turbines:
 - immature market
 - low-cost
 - → low budget for resource assessment and siting
 - + limited time for measurements
 - generally complex environment

Rule 1: Know the market

VUB database of small wind turbines

- Turbines < 100 kW
- 762 turbines and counting
 - Most extensive survey to date
 - HAWT
 - VAWT
 - Other concepts

23

VUB database of small wind turbines

Typical entry: main characteristics of turbine
 + comments: measured P-curve, cut-in or start, ...

Image	Naam	Bedrijf	Vermogen	Rotor diameter	Cut- in	Cut-out	Jaarlijkse Productie	Prijs	Mogelijkheid met netconnectie	P- curve
	FD6.4- 5kW	ReDriven	5000 W	6,4 m	2 m/s start	19 m/s	6184 kWh/jaar (U _{gem} = 4 m/s) Berekend	€ 10660 Excl. mast	Jā	Ja

- Basis for comparison between small turbines, with estimate of annual production
- Select turbines for test fields
- Help clients select small turbines

Rule 2: know the wind resource

- Estimate the available wind resource with the aim of predicting the energy production for an appropriate wind turbine
- This is in practice not always easy to do cheaply and reliably

25

Rule 3: proper micrositing

- Optimal location and height of the turbine
 - > 3-D model of the site or building
 - Combined with computational fluid dynamics ('virtual wind tunnel')

Small and medium wind turbines: resource assessment + siting

- Feasibility
 - Turbine choice
 - Resource assessment
 - Turbine siting
 - Technical feasibility
- Use measurements and numerical simulations
 - Resource assessment: measurements
 - Micro-siting: numerical simulations

27

Viability map, example for Flanders

- Viability map for SMEs
 - Values indicate average wind speed [m/s]
 - ▶ Turbine with rated power 10 kW (Hub height 18 m)
 - ▶ Red (IRR<8%), Orange (8%≤IRR<12%), Green (IRR≥12%)</p>

The potential for wind energy in Brussels

29

Wind potential in Brussels: global wind conditions

Wind maps based on terrain information and meteo data

Figure 1: Roughness map (left) and wind speed at 10 m above mean building height (right) for the Brussels Region.

Wind measurements: site selection

Result

- 4 sites were selected:
 - » Hilton
 - » ULB Campus Solbosch
 - » Flia
 - » Port of Brussels

21

Wind measurements: results

- The Hotel:
 - building height 94 m
 - close to porte de Namur
 - Over 1 yr of measurements
 - Average wind speed:5.8 m/s
 - This is comparable to the wind at the Belgian coast (at normal hub height)

Wat would a wind turbine on The Hotel produce?

- The Hotel:
 - Yearly production
 - » Sonkyo Windspot: 14200 kWh/yr
 - » Ennera: 8170 kWh/yr
 - Dynamic payback time
 - » KMO: Sonkyo Windspot & Ennera:
 7 jr
 (10-12 yr without support)
 - IRR:
 - » Sonkyo Windspot: 17.2 %
 - » Ennera: 15.1 %

33

Wind measurements: results

- Other high-rises (Manhattan-tower): comparable results
- Lower buildings (40 m): conditions much less favourable
- Unclear: potential for medium-sized turbines in semiopen terrain
- 12 m above ground (typical hub height < 15 m):
 - mean wind speed 3.7 m/s
 - comparable to Schoondijke (Zeeland)

Building-mounted small wind turbines

- Turbine should not affect structural health of building
- Impact on occupants and surrounding should be negligible
- Impact on air traffic should be negligible
- Impact on biodiversity should be negligible
- Turbine should be economically viable

Impact of rooftop-mounted wind turbines

- Structural effect of vibrations: very limited
- Visual impact

direct: inaudible

- through vibrations: investigation ongoing
- Biodiversity: very little impact
- No risk for air traffic

Shadow flicker

- Guideline
 - -d = 2 times height
 - max 30 h/yr
 - max 30 min/day
- The Hotel
 - Shadow moves fast enough

Summary of situation in Brussels

- Wind conditions on high-rises comparable to conditions at the Belgian coast
 - Payback times < 10 yr</p>
 - ▶ IRR > 15 %
 - This is very good for distributed generation
- BUT: only true for good wind turbines, in a good location, properly installed
- Semi-open terrain not measured
- Impact very limited. Detailed feasibility study always required

Economic impact — long term

 In the long term, and providing the problem of rooftop crowding can be managed, there is the potential for roughly 50 sites for rooftop-mounted wind turbines in Brussels, resulting in a power production of the order of 1.5 GWh/yr

Portland, Oregon (2009)

Summary

- There is a potential for wind energy in the BCR
- Brussels can obtain an international pole position in urban wind energy
- Brussels has the technological assets required
- Now is the time for pilot projects
- The expected economic impact of wind energy in Brussels is significant

Mark.Runacres@vub.ac.be

41