2014 IERE – GDF Suez Brussels Workshop

Energy at home

4th June 2014

MESB

Micro Energy Storage in Buildings

Prof P Hendrick

Ir G Oliveira Silva

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

AERO-THERMO-MECHANICS DEPT.

- TURBO REACTOR LUBRICATION
- UAVs
- HELICOPTERS
- CFD SIMULATION
- MECHANICAL DESIGN AND CONCEPTION
- AERONAUTICAL AND SPATIAL PROPULSION
- Renewable energy: fuel cell, wind turbine
- ENERGY STORAGE: HYDROGEN, PUMPED HYDRO, COMPRESSED AIR.

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

PRESENTATION OUTLINE

Introduction

WHY ENERGY STORAGE?
RESEARCH PROPOSAL

RESULTS AFTER 1 YEAR

PUMPED-HYDRO ENERGY STORAGE (PHES)
COMPRESSED AIR ENERGY STORAGE (CAES)
THERMAL
HYDROGEN
ELECTROCHEMICAL BATTERIES

FUTURE WORK

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

INTRODUCTION

INTERMITTENT ENERGY PRODUCTION

IMBALANCE BETWEEN ENERGY PRODUCTION AND ENERGY CONSUMPTION

ENERGY STORAGE

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

INTRODUCTION

WHY MICRO ENERGY STORAGE?

- Less studied area
 - BETTER RETURNS ON INITIAL R&D
- PROMOTE PRIVATE INVESTMENT
 - LIBERALIZATION OF THE ENERGY SECTOR
- REPLICATE PHOTOVOLTAICS'
 SUCCESS
 - LOWER COSTS
 - OPENING OF NEW MARKETS
 - Make technology widely available

SEVERAL PROJECTS:

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

4th June 2014

ELECTROMECHANICAL EQUIPMENT

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

WATER TOWER

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

Underground reservoirs

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

Underground **RESERVOIRS**

△ Preesall 2016v

Caythorpe 2013v

10

2014 IERE – GDF Suez Brussels Workshop Energy at home

O Hatfield 2000v

Cost €₂₀₁₂/kWh

0

G Oliveira Silva P Hendrick 4th June 2014

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

CONCLUSIONS

- COSTLY FOR SMALL-SCALE ENERGY STORAGE (<1MWH)
- BEST SOLUTIONS:
 - Natural underground reservoirs
 - ARTIFICIAL RESERVOIRS WITH LARGE HEIGHT DIFFERENCE (>200m)
 - Large diameter excavated reservoirs (>50m diameter)

QUESTIONS

- CAN IT BE INTEGRATED WITH OTHER SERVICES (THERMAL STORAGE FOR EXAMPLE)?
- GEOLOGICAL STRUCTURES CONSTRAINTS
- EQUIPMENT LIFETIME AND MAINTENANCE
- In buildings: structural reinforcement?

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

4th June 2014

AIR COMPRESSORS/ TURBINES

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

Compressed air tanks

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

CONCLUSIONS

- COST ACCEPTABLE FOR SMALL-SCALE ENERGY STORAGE (>100kWh)
- THERMAL MANAGEMENT MANDATORY
- HIGH-PRESSURES RECOMMENDED (BEST CASE: 325BAR)

QUESTIONS

- Integration of other services (thermal, compressed air)
- GEOLOGICAL STRUCTURES CONSTRAINTS
- COMPRESSORS REVERSIBILITY (TURBINE)
- Effect of pressure variation
- EQUIPMENT LIFETIME AND MAINTENANCE COSTS
- Noise

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

4th June 2014

TO+12 RESULTS - THERMAL

SENSIBLE HEAT THERMAL STORAGE

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

TO+12 RESULTS - THERMAL

CONCLUSIONS

- VERY LOW COST (0,6C€/KWH)
- HEAT AS A BYPRODUCT
- Phase-change technologies (latent heat) under development
- LOW GRADE ENERGY WHEN COMPARED TO ELECTRICITY

QUESTIONS

- INTEGRATION ON OTHER STORAGE SYSTEMS (FUEL CELLS, ETC)
- OTHER TECHNOLOGIES: DISTRICT HEATING, UNDERGROUND
- LATENT HEAT STORAGE
- EQUIPMENT LIFETIME AND MAINTENANCE COSTS
- HEAT ORIGIN

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

4th June 2014

TO+12 RESULTS - HYDROGEN

ELECTROLYZER

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

TO+12 RESULTS - HYDROGEN

FUEL CELL

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

TO+12 RESULTS - HYDROGEN

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

TO+12 RESULTS - BATTERIES

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

TO+12 RESULTS - BATTERIES

Lifetime cost	Lead acid	Lead acid	Lithium-ion
€ ₂₀₁₂ /kWh	sealed	flooded	
4h	0,68	0,46	0,22
10 h	0,61	0,39	0,20

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

TO+12 RESULTS - BATTERIES

CONCLUSIONS

Low cost for Li-Ion

QUESTIONS

- LIFETIME
- O&MAINTENANCE COSTS

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

TO+12 RESULTS - CONCLUSION

	20 year lifetime cost	Volume	Mass
Pumped hydro	72-57c€/kWh	36,6m ³ /kWh	36600kg/kWh
Reservoirs at 20m. 4h system.	57 (100kWh)	1830m³ (100kWh)	3660Ton (100kWh)
CAES	14-12c€/kWh 4h	0,08-0,11m ³ /kWh	78-88kg/kWh
325bar system	10-9c€/kWh 10h	10m³ (100kWh)	8Ton (100kWh)
Hydrogen	41-13c€/kWh	0,101m ³ /kWh	24 to 17kg/kWh
200-420bar. 8h charge/4h disch.	23 (100kWh)	10m³ (100kWh)	2Ton (100kWh)
Thermal	0,87-0,36c€/kWh	0.014 m3/kWh	14kg/kWh
Hot water. ΔT=60º	0,55 (100kWh)	1,4m³ (100kWh)	1,4Ton (100kWh)
Flooded lead-acid battery	46c€/kWh	25l/kWh	55kg/kWh
50%DoD	from 10kWh	2,5m ³ (100kWh)	5,5Ton (100kWh)
Sealed lead acid battery	68c€/kWh	28l/kWh	62kg/kWh
50% DoD	from 10kWh	2,8m³ (100kWh)	6,2Ton (100kWh)
Li Ion battery	20c€/kWh	9l/kWh	14kg/kWh
80%DOD	from 10kWh	0,9m³ (100kWh)	1,4Ton (100kWh)

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

TO+12 RESULTS - CONCLUSION

Lifetime cost (c€₂₀₁₂/kWh)

Area costs were considered to vary from 2700€₂₀₁₂/m²

(Brussels) to 1700€₂₀₁₂/m² (Liège)

		•	<u> </u>	20127 (-0-7	
	Energy (Wh)	2k	10k	100k	1M
	Pumped hydro Reservoirs at 20m. 4h system.	-	756 - 503	742 – 489	-
	CAES 325bar system	-	13 - 12	11 - 10	10 – 9
\	Hydrogen 200-420bar. 8h charge/4h disch.	-	42 - 41	24 - 23	14 – 13
Technology	Lead acid flooded 50%DoD	54	46	46	46
Te	Lead acid sealed 50% DoD.	75	68	68	68
	Lithium-ion 80%DoD.	22	22	22	22
	Thermal Hot water. ΔT=60°.	-	1,2 – 1,1	0,9 - 0,8	0,7 - 0,6

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

TO+12 RESULTS — A WORD ON COST

$$\sum_{t=0}^{n} \left(\frac{Expenses_t}{(1+r)^t} \right) = \sum_{t=0}^{n} \left(\frac{Benefits_t}{(1+r)^t} \right)$$

$$s Cost_{OUTO} = \frac{Cost_0}{E_{OUT}n} + \frac{s Cost_{NO}}{\eta}$$

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick 4th June 2014

TO+12 RESULTS— PROJECT'S DATABASE

DATABASE OF EXISTING
AND PLANNED ENERGY
STORAGE SYSTEMS
PROVIDING SUPPLIERS,
TECHNIQUES, COSTS,
ETC.

		Date, company and location	Technical parameters	Technology description
Existing		1978 Huntorf plant	290MW/ 3h (32)	Compressed air stored in a salt dome with 310.000mf at up 100bar. Combustion of natural gas during expansion proces
	ь	1991 Alabama Electric Cooperative McIntosh, Alabama	110MW/ 26h 65M\$ ₁₉₉₁ ⁽⁹⁴⁾	Compressed air is stored in a 538.000m ² solution mined sal cavernat pressures up to 75bar. Combustion of natural gas during expansion process ⁽²⁴⁾ .
	Existi	2011 Highvie w Power Storage Slough, Berkshire, UK	350kW / 7h (24) 50% efficiency (25) 70% efficiency if using 115°C waste heat (25)	Air is liquefied for storage ⁽²²⁾ .
		2012 General compression Gaines, Texas, USA	2MW ⁽²⁹⁾ / 250h ⁽²²⁾ 70-75% ⁽⁹⁰⁾	Compressed air is stored in a cavern (29).
		2013 SustainX Seabrook, New Hampshire, USA	2MW 95% efficiency 20 year lifetime (⁽²⁶⁾ 13M\$2012	Sprayed water CAES for heat management. Use of standard steel pipes for compressed air storage (³⁶⁾ .
		2013 Alliant Techsystems Inc Promontory, Utah, USA	80kW / 30-60min 3,6M\$ ₂₀₁₂ (22)	Above ground compressed air energy storage (22).
		2013 RWE Power Stassfurt, Germany	360MWh/90MW 70% efficiency 40M€ for 3, 5years (27)	Compressed air stored in subterranean caverns (27).
Projects	Projects	2013 Hydrostor Toronto, Ontario, Canada	1MW / 4MWh (27) >25year lifetime 65-75% efficiency 100€ ₂₀₁₂ /kWh-installation (28)	Compressed air is stored in underwater bags (27).
		2016 A pe x CAES Anderson, South California, USA	317MW 350-400M\$ ₂₀₁₂ (38)	Compressed air stored in subterranean salt dome ⁽²⁴⁾ .
		Pacific Gasand Electric Co. Kern, California, USA	300MW 355M\$ ₂₀₁₂ (22)	Compressed air stored in subterranean porous-rock de plete gas field (22)(29).
		New York Power Authority New York, United States	9-10MW/4h30 ^{(29) (29)}	Compressed air stored in steel piping ⁽³⁹⁾ . Possible combusti natural gas during expansion ⁽³⁹⁾ .
		Hydro One Toronto, Canada	3-5MW/ 1-2h 8-10M\$ ₂₀₁₂ (29)	Molten salt thermal energy storage system at 540 to 820°C stored above ground at a pressure up to 110bar (²⁸⁾ .
		NPPD Nebraska, USA	135MW/ 10h ⁽²⁹⁾	Compressed air stored in a depleted natural gas field with a volume of 850 million m ² to a pressure up to 60bar ⁽²⁰⁾ .

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

4th June 2014

FUTURE WORK - SYSTEMS

Fuel cell

Performance model / reversibility / heat use

Thermal

Heat exchange / phase-change modeling / heat pump

Pumped hydro

Small variable reversible pump/ flow control

Compressed air

Small variable reversible high-pressure compressor/ Storage tanks / Compressed air use (vehicles/ ICE)

Flywheels

Modeling / bearings

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick 4th June 2014

FUTURE WORK — STORAGE INTEGRATION

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

FUTURE WORK — STORAGE INTEGRATION

- Output smoothing of variable energy sources
- Voltage control
- Frequency control
- Black start
- Commodity storage
- Self-consumption
- Investment deferral
- Energy efficiency

Electricity cost for bi-hourly tariffs in Brussels in February 2014.

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick 4th June 2014

FUTURE WORK - CASE STUDIES

ANALYSIS OF SEVERAL BUILDINGS.
INTERACTION WITH OWNERS AND
BUILDERS.

ULB SOLBOSCH CAMPUS

ULB'S LIBRARY OF SOCIAL SCIENCES

PRIVATE RESIDENCE

ULB'S MANDELA STUDENT RESIDENCE

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

4th June 2014

PUBLICATIONS & PRESENTATIONS

8TH International Renewable Energy Storage Conference 18-20 November 2013 Berlin, Germany

MEETINGS ON SUSTAINABLE CONSTRUCTION & EFFICIENT ENERGY BUILDINGS
21ST JANUARY 2014
BRUSSELS, BELGIUM

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick 4th June 2014

SOME REFERENCES

Key world energy statistics 2012. IEA. s.l.: IEA, 2012

Cost determination of the electro-mechanical equipment of a small hydro-power plant. **Ogayar, P. e vidal, P.G.** s.l.: Renewable energy, 2009.

Cost minimization in micro-hydro systems using pumps as turbines. **Alatorre-Frenck, Claudio.** s.l.: PhD thesis, University of Warwick, 1994

California department of transportation construction costs database. http://sv08data.dot.ca.gov/contractcost/. s.l.: online, 2013

Maintenance History of Four Steel Water Tanks. Neumann, Walter e Newman, Wade. s.l.: Water & wastes digest, 2000

Feasibility of CO2 sequestration in abandoned coal mines in Belgium. Piessens, Kris e Dusar, Michiel. s.l.: Geologica Belgica, 2004

Novel approach for decentralised energy supply and energy storage of tall buildings in Latin America based on renewable energy sources: Case study - Informal vertical community Torre David, Caracas - Venezuela. Fonseca, Jimeno e Schlueter, Arno. s.l.: Energy, 2013

DOE international energy storage database. http://www.energystorageexchange.org/. s.l.: online, 2013 Project ADELE. www.rwe.com. s.l.: online, 2013

A trigeneration system based on compressed air and thermal energy storage. Li, Yongliang, et al., et al. s.l.: Applied energy, 2012

Pumps as turbines. A user's guide. Williams, Arthur. s.l.: Intermediate technology publications, 1995
Reverse running pumps analytical, experimental and computational study: A review. Nautiyal, Himanshu e
Kumar, Anoop. s.l.: Renewable and Sustainable Energy Reviews, 2010

2014 IERE – GDF Suez Brussels Workshop **Energy at home** G Oliveira Silva P Hendrick

4th June 2014

2014 IERE – GDF Suez Brussels Workshop

Energy at home

4th June 2014

THANK YOU!

Questions? Comments?

MESB

Micro Energy Storage in Buildings

Prof P Hendrick

Ir G Oliveira Silva

2014 IERE – GDF Suez Brussels Workshop **Energy at home**

